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Abstract A novel direct model with kinetic base for the prediction of the final
vulcanization level of EPDM cured with sulphur is presented. The model bases on
a preliminary characterization of rubber through standard rheometer tests and allows
an accurate prediction of the crosslinking degree at both successive curing times and
different controlled temperatures. Both the case of indefinite increase of the torque
and reversion can be handled. The approach proposed bases on a previously presented
exponential model, where a calibration of three kinetic constants at fixed temperature
by means of non-linear least square fitting was required. Here the exponential model
is superseded and kinetic constants are evaluated through simple closed form formu-
las. The applicability of the approach is immediate and makes the model extremely
appealing when fast and reliable estimates of crosslinking density of cured EPDM
are required. To show the capabilities of the approach proposed, a comprehensive
comparison with both available experimental data and results obtained numerically
with the exponential model for real compounds at different temperatures is finally
provided.
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1 Introduction

In order to guarantee a good level of vulcanization, macroscopically intended as good
mechanical performance of the items after curing, the level of reticulation reached
point by point by a rubber specimen subjected to prescribed temperature and cure
time conditions should be predicted by means of reliable theoretical or numerical
models.

As a matter of fact, the most diffused system of vulcanization is represented by
accelerated sulphur curing. While the utilization of peroxides to vulcanize rubber
would be preferable, being the links determined by transversal chains largely more
stable (energy 346 KJ/mole against 272 KJ/mole [1]), sulphur is normally preferred
merely for economic reasons.

Unfortunately, unlike peroxidic curing, sulphur vulcanization chemistry is rather
intricate, since crosslink is associated to complex reactions occurring in series and
parallel. For this reason, to propose a quantitative macroscopic model able to predict
vulcanization in terms of rubber physical properties is still a true challenge. At present,
it can be stated that, while the utilization of sulphur is quantitatively predominant, its
chemistry of vulcanization remains an open issue, despite its discovery and utilization
go back to Goodyear [2–7].

To be fully predictive, a numerical model should take into account the distinc-
tive aspects of sulphur vulcanization, being reversion the most important. Reversion
occurs quite frequently in practice and consists in a remarkable decrease of rubber
vulcanized properties at the end of the curing process. Chen et al. [8] have shown that
this phenomenon seems to appear when two reactions are competing during vulca-
nization. Reversion is often associated with high-temperature curing. In agreement
with the studies conducted by Loo [9], it can be stated that, generally, when the cure
temperature rises, the crosslink density drops, thus increasing the degree of rever-
sion. Morrison and Porter [10] confirmed that the observed reduction in vulcanizate
properties is caused by two reactions proceeding in parallel, i.e. de-sulphuration and
decomposition, see Fig. 1.

The commonly accepted experimental test at the base of any numerical/analytical
model for sulphur curing is the so-called rheometer test [11,12]. The fundamental
importance of this test for the experimental characterization of crosslinking has been
acknowledged in the recent past by many authors, especially Poh and co-workers
[13–18].

Such standard test is usually performed maintaining a small rubber cylindrical spec-
imen inside a chamber at fixed vulcanization temperature, where a metallic disc oscil-
lates. Torque resistance to oscillation is registered at increasing exposition times and
plotted in a so-called rheometer chart or cure curve thus giving indirect macroscopic
information on rubber reticulation kinetics at fixed temperature. Nowadays, different
rheometers are at disposal in the market, ranging from traditional devices equipped
with metallic oscillating discs (ODR) to rotor-less [19,20] (RPA2000) instruments,
where the oscillating part is removed to reduce spourious secondary torques induced
by inertia and friction. In any case, all devices are able to register the torque variation
(or rotation resistance) during the test. Typically, both natural and synthetic rubber
exhibit a decrease in the initial part of the test, followed by a sudden increase at
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Fig. 1 Products and schematic reaction mechanisms of accelerated sulphur vulcanization of poly-diene
and EPDM elastomers

approximately 1/3 of time needed to complete the test (scorch time). In several cases,
torque decreases near the end of the experimentation. Such behavior is commonly
associated to reversion. A single compound has its own characteristic cure curve at
fixed temperature, which characterizes macroscopically the reticulation of the com-
pound. A change in both accelerators molar ratios and temperature room changes the
cure curve.

Basing almost exclusively on experimental rheometer charts, pioneering analytical
contributions in the right direction are due to some authors, who proposed simplified
approaches for the practical evaluation of the final crosslinking degree of vulcanized
items. Among the others, [21–26] models may be acknowledged. Conceived essen-
tially for natural rubber, they basically rely into simplified kinetic models enforced to
follow differential equations similar to those used for peroxidic curing, basing on an
experimental data fitting to deduce kinetic constants.

To circumvent limitations of such models in the application of EPDM rubber,
the mechanisms at the base of vulcanization for such blend should be properly con-
sidered. In this framework, focusing exclusively on EPDM rubber, the commonly
accepted basic reactions involved–see also [27–30], Fig. 1, may be regarded to be the
following:
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(a) P + A
K1
︷︸︸︷→ P∗

1

(b) P∗
1

K2
︷︸︸︷→ Pv

(c) Pv

K3
︷︸︸︷→ Qx (1)

(d) Pv

K4
︷︸︸︷→ De

(e) Pv

K5
︷︸︸︷→ Pv f

In Eq. (1), P and A are the polymer (EPDM) and soluble sulphureted zinc complex
(S8 + accelerators + ZnO + stearic acid) respectively, P∗

1 is the pendent sulfur (cross-
link precursor), Pv is the reticulated EPDM, Pv f is the matured cross-link, Qx is the
oxidation product, De represents diaryl-disulphide and K1,...,5 are kinetic reaction
constants. Here it is worth emphasizing that K1,...,5 are temperature dependent quanti-
ties, hence they rigorously should be indicated as K1,...,5(T ), where T is the absolute
temperature. In what follows, for the sake of simplicity, the temperature dependence
will be left out.

Reaction (a) in (1) represents the allylic substitution in Fig. 1, reaction (b) is the dis-
proportionation, whereas reactions (c) (d) and (e) occurring in parallel are respectively
the oxidation, the de-sulphuration and the de-vulcanization.

A macroscopic interpretation of sulphur vulcanization, which resigns to take its
steps on kinetic considerations but bases exclusively on experimental rheometer chart
data fitting, has been recently proposed by the authors in [31] and [32], respectively in
absence and presence of reversion. The models are merely phenomenological, approx-
imating the rheometer chart by means of two parabolas and one hyperbola. In case of
reversion, the hyperbola is rotated with respect to coordinate axes. While the appli-
cation of such model is very straightforward for practical purposes, the absence of a
kinetic base does not permit to generalize the models to any vulcanization temper-
ature directly from the numerical model and a huge amount of experimental data is
needed.

To supersede such limitation, very recently, Milani and Milani [33,34] have pre-
sented a relatively simple numerical model basing on actual reaction kinetics (1),
where rubber crosslinking density during vulcanization may be found solving a non-
homogeneous second order differential equation with unknown constant coefficients.
The approach is fully based on reaction kinetic characterizing EPDM sulphur curing.
Independent unknown coefficients are only three, and may be regarded as a combina-
tion of kinetic constants associated to partial reactions occurring during vulcanization,
see also Fig. 1. Milani and Milani [33,34] proposed to estimate numerically indepen-
dent coefficients through a data fitting on experimental rheometer curves available for
a given compound, thus indirectly evaluating the crosslinking degree from a macro-
scopic test. The approach is mathematically rather simple, but has the drawback of
requiring a material identification through non-linear least square routines or genetic
algorithms.
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Available codes are usually stable, but sometimes may be tedious in the calibration
of optimization options, as for instance the choice of the initial iteration values for
the independent variables to identify. To circumvent this important limitation of the
procedure, and to make it immediately applicable by manufacturers, in the present
paper a new approach, which still bases on the original model proposed in [33,34],
but allows a kinetic parameters characterization by means of closed form formulas is
proposed.

The major improvement relies into the approximation of the cure curve numeri-
cally determined through [33,34] models into a modified rheometer chart, where the
horizontal axis is replaced by the normalized logarithm of the curing time, by means
of three straight lines.

Such approximation allows a direct evaluation, by means of simplified but effec-
tive formulas, of the parameters entering the second order differential equation model
proposed in [33,34].

The improved model is tested on two different EPDM compounds, both exhibiting
some reversion at high temperatures. Rheometer charts so evaluated are compared with
curves provided by the model proposed in [33,34], available experimental data and
a simplified approached without reversion. Finally kinetic constants so obtained are
again compared with those provided by an approach based on linear least square fit-
ting of the second order non homogeneous differential equation by Milani and Milani
[33,34].

In both cases considered, results are in excellent agreement with existing literature,
exhibiting errors in constants estimations non exceeding 5 %, meaning that the direct
procedure presented may be represent a valuable tool for all manufactures interested
in a fast prediction of the level of crosslinking of EPDM cured with sulphur, at fixed
vulcanization temperature and time conditions.

2 The improved kinetic numerical model

The model hereafter presented takes its steps from the theoretical results obtained in
[33,34], superseding the major limitation of such approach, i.e. the tedious non-linear
least square numerical evaluation of the kinetic constants at the base of the model.

As well known, non-linear least square routines are not always at disposal to man-
ufacturers, require time to be managed with awareness and sometimes fail to find a
solution, especially when a wrong starting point is selected. In addition, the overall
procedure may be tedious and in some cases could provide results affected by a cer-
tain level of scatter, due to the numerical instabilities related to the number of points
sampled to perform the best fitting.

Such major drawback is completely overcome in this paper, as it is shown in detail in
this section. To make the model fully clear, the main features related to the exponential
model proposed in [33,34] are hereafter briefly recalled.

The worldwide recognized standard experimental test to evaluate macroscopically
the vulcanization characteristics of vulcanizable rubber compounds is the so-called
oscillating disc or rotorless curometer test [20].
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Fig. 2 Typical experimental
behaviour of a rubber compound
during rheometer test
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In one version of such a device (oscillating disc rheometer) the sample of rubber
is enclosed within a heated chamber. Vulcanization is measured by the increase in the
torque required to maintain a given amplitude of oscillation at a given temperature.
The torque is thus roughly proportional to reticulation. The torque is plotted against
time to give a so-called rheometer chart, rheograph or cure curve, which exhibits a
number of features used to compare cure.

In a rheometer chart, the resistance to oscillation (torque) is measured and recorded
as a function of time, as in Fig. 2. In practice, three different cases can occur, as shown
in Figs. 2: (1) the curve reaches a maximum asymptotically, (2) the curve reaches
a maximum and then decreases (reversion) and (3) the curve increases monotoni-
cally after the scorch point t2. In Fig. 2 the so called t90 point is also represented.
It is defined as the time to achieve 90 % cure and, mathematically, it is the time for
the torque to increase to 90/100(MHF − Mm) + Mm. t90 makes sense only for scorch
curves reaching a maximum torque. The second case is encountered very frequently in
practice, because reversion is a distinguishing characteristic of sulphur curing (Fig. 1),
especially at high temperatures.

The numerical algorithm proposed is based on the experimental use of rheometers
following the ASTM D 2084 method [19] at different temperatures to collect a suitable
database of experimental data regarding cure curves at increasing temperatures and
their successive interpolation by means of a simple kinetic mathematical formulation.

At present, the knowledge regarding the chemistry of accelerated sulphur vulcani-
zation seems a bit fragmented; some useful experimental data are available from Poh
et al. [13–18], who observed a marked relation among scorch time, amount of acti-
vators used and rheometer temperatures. Unfortunately, numerical and/or theoretical
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models in this fields are a few. In this context, an attempt to propose a computer aided
procedure to maintain and guarantee a uniform product quality was presented recently
in [35], but for PBR and focusing exclusively on Mooney viscosity.

In any case, data reported in the literature are insufficient to fully calibrate the
numerical model here proposed. In fact, in order to predict the vulcanization rate dur-
ing an industrial process of production of thick items, it is necessary to have at disposal
from laboratory experimentation, several rheometer curves at different controlled cur-
ing temperature inside the rheometer.

Chemical reactions occurring during sulfur vulcanization reported in (1) obey the
following rate equations:

d P

dt
= −K1 AP

d Pv

dt
= K2 P∗

1 − K3 Qx − K4 De − K5 Pv f

d Qx

dt
= K3 Pv (2)

d De

dt
= K4 Pv

d Pv f

dt
= K5 Pv

By means of the so called xyz method, independent variables may be established.
From stoichiometry of the reaction, it can be argued that:

A = A0 − x

P = P0 − x

P∗
1 = x − y = (P0 − P) − y = (P0 − P) − (Pv + Qx + De + Pv f

)

Pv = y − z − q − r (3)

Qx = z

De = q

Pv f = r

where x = P (t) , y = Pv (t) , z = Qx (t) , q = De (t) , r = Pv f (t) identify inde-
pendent variables, P0 and A0 are the initial molar concentrations of polymer and curing
agent, or better the soluble sulphur agent zinc complex (S8 + Accelerators + ZnO +
Stearic acid) respectively. Typically they are known production parameters (they may
obviously vary from case to case) and they are obtained mixing all the components in
an internal mixed before vulcanization.

The aim of the approach is to provide an analytical expression for vulcanized rubber,
i.e. concentration of Pv (t) with respect to time.

From (2) and (3), the following set of differential equations is deduced:
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(a)
d P

dt
= −K1 AP

(b)
d Pv

dt
= K2 P∗

1 − K3 Qx − K4 De − K5 Pv f

= K2
[

(P0 − P) − (Pv + Qx + De + Pv f

)]

−K3 Qx − K4 De − K5 Pv f (4)

(c)
d Qx

dt
= K3 Pv

(d)
d De

dt
= K4 Pv

(e)
d Pv f

dt
= K5 Pv

Obviously the first order differential equation system (4) can be solved using a standard
Runge-Kutta numerical approach [36,37]. However, such a procedure, when coupled
with a non-linear least square algorithm (as in the present case) may become very
tedious to be performed (especially for stiff problems) and in some cases may fail to
converge during experimental data fitting. Here, an alternative procedure based on the
derivation of a single differential equation is adopted. Differentiating equation (4)(b)
with respect to time, we obtain:

d2 Pv

dt2 = −K2

(

d P

dt
+ d Pv

dt
+ d Qx

dt
+ d De

dt
+ d Pv f

dt

)

− K3
d Qx

dt

−K4
d De

dt
− K5

d Pv f

dt
(5)

which, from (4), can be re-written as follows:

d2 Pv

dt2 + K2
d Pv

dt
+ K̃ 2 Pv = −K2

d P

dt
= K1 K2 AP (6)

having assumed K̃ 2 = K2(K3 + K4 + K5) + K 2
3 + K 2

4 + K 2
5 .

Taking A moles equal to P moles, d P
dt becomes:

d P

dt
= −K1 P2 (7)

(7) is a first order differential equation with separable variables. Its integral is:

P(t) = P0

(P0 K1t + 1)
(8)

Substituting (8) into (6) we obtain the following differential equation:

d2 Pv

dt2 + K2
d Pv

dt
+ K̃ 2 Pv = −K2

d P

dt
= K1 K2 P2

0

(P0 K1t + 1)2 (9)
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(9) is a non-homogeneous second order differential equation with constant coefficients.
From obvious physical considerations, it can be argued that K2 � K3 ≈ K4 ≈ K5

and hence K2/2 > K̃ , meaning that (K2/2)2 − K̃ 2 >0. Hence, the integral of the
homogeneous part is trivial, i.e.:

Pv(t) = C1e(α+β)t + C2e(α−β)t (10)

where C1 and C2 are two constants that can be determined from initial conditions,

α = −1/2K2 and β =
√

(K2/2)2 − K̃ 2.
The determination of the particular integral of (9) is not an easy task. In absence

of consolidate ad-hoc procedures, the so-called general technique of the variation of
the arbitrary constants should be used. However, such a general procedure provides
only first derivatives of some functions entering in the particular integral and their
analytical integration is in any case not possible. Here, an alternative procedure is
proposed, which consists in substituting the original function, say g(t), representing
the right hand side of (9), with a fitting function in the following form:

f (t) = γ1eγ2 K1 Pot (11)

where γ1 and γ2 are further constants to be determined in such a way that (11) fits as
close as possible the non homogeneous term.

To make (11) near to the original function, we require that:

f (0) = g(0)

tm→∞
∫

0

f (t)dt =
tm→∞
∫

0

g(t)dt (12)

Here it is worth noting that the first condition of (12) requires that functions f and g
have the same initial value, whereas the second corresponds to impose that the average
decay of unpolymerized reagent is the same, with the implicitly accepted simplifying
hypothesis that at the end of the test (in practice for an infinite time) the unpolymerized
reagent is negligible.

From (12) it can be shown that γ1 = γ2 = 1.
With the substitution adopted, a particular integral P p

v (t) is:

P p
v (t) = K1 K2 P2

0

[

(K1 P0)
2 − K2 (K1 P0) + K̃ 2

]−1
e−K1 P0t (13)

To fully solve the problem, it is necessary to determine constants C1 and C2. They are
found from the following initial conditions as:

Pv(0) = 0
dPv

dt

∣

∣

∣

∣

t=0
= K2 P∗(0) = 0 (14)
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After trivial algebra, it can be concluded that:

⎧

⎨

⎩

C2 = ρ
(

− K1 P0
2β

− α
2β

− 1
2

)

C1 = ρ
(

K1 P0
2β

+ α
2β

− 1
2

) (15)

having defined ρ = K1 K2 P2
0

[

(K1 P0)
2 − K2(K1 P0) + K̃ 2

]−1
.

To summarize, the concentration of vulcanized polymer, during vulcanization,
within the mixture obeys the following equation:

Pv(t) = C1e(α+β)t + C2e(α−β)t + ρe−K1 P0t

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

C2 = ρ
(

− K1 P0
2β

− α
2β

− 1
2

)

C1 = ρ
(

K1 P0
2β

+ α
2β

− 1
2

)

ρ = K1 K2 P2
0

[

(K1 P0)
2 − K2 (K1 P0) + K̃ 2

]−1

α = − K2
2

β =
√

(K2/2)2 − K̃ 2

K̃ 2 = K̃ 2 = K2 (K3 + K4 + K5) + K 2
3 + K 2

4 + K 2
5

(16)

Kinetic constants to determine are only three, namely K1, K2 and K̃ 2.
The most straightforward method to numerically estimate such kinetic constants is

that followed in [34], relying into a experimental cure-curve data fitting, performed
normalizing experimental data at peak to P0 and translating the initial rotation resis-
tance to zero, as suggested by Ding and Leonov [21].

In [34], K1, K2 and K̃ 2 variables are found through a standard nonlinear least square
routine. Here an alternative and more efficient model is utilized, which requires only
3 experimental data and allows a direct evaluation of the constants by means of the
roots evaluation of three single variable non linear functions.

Furthermore, it is worth noting that K1, K2 and K̃ 2 are temperature dependent
constants. Therefore, also their variability with respect to absolute temperature should
be investigated experimentally.

The simplest literature equation linking reaction constants to absolute temperature
T is the so called Arrhenius law, which mathematically may be written as:

Ki (T ) = Ki Ae−Ki B T (17)

where Ki A and Ki B are two temperature independent constants.
From a mathematical point of view, from (16) and (17), it can be deduced that a

total of 6 temperature independent reaction constants has to be identified numerically:
K1A, K1B, K2A, K2B, K̃ A, K̃ B . As a consequence, at least 2 rheometer curves at two
different absolute temperatures are needed to identify all constants. From a practical
point of view, since in the T − log Ki (T ) plane the Arrhenius law (17) is represented
by a straight line, at least 3 experimental data at different temperatures are needed,

123



J Math Chem (2012) 50:2577–2605 2587

to deduce accurate values for Ki A and Ki B constants through a standard least square
fitting procedure.

In Milani and Milani [34] experimental rheometer curves are represented, probably
for the first time, assuming as vertical axis values normalized as (M − Mm)/(Mmax −
Mm) and as horizontal axis the quantity log(t/tmax), namely the logarithm of the nor-
malized vulcanization time. This latter representation is practically very useful because
it suggests to approximate both the experimental and numerical data provided by
Eq. (16) by means of three straight lines. The slope of the last line well approximates
reversion. Authors experienced that such a behavior is systematic, i.e. it occurs at
any temperature for any compound and helps for a very practical characterization of
reaction constants, as it will be shown hereafter.

At a fixed vulcanization temperature, by means of Eq. (16) and the chain rule, the
first derivative of cross-linked polymer concentration with respect to log(t/tmax) is:

d Pv (t)

d ln t
tmax

= tmax
d Pv (t)

d ln t
= tmaxt

d Pv (t)

dt

⇒ d Pv (t)

d ln t
tmax

= tmaxt
(

C1 (α + β) e(α+β)t + C2 (α − β) e(α−β)t − ρ K̃1e−K̃1t
)

(18)

Having indicated with K̃1 the quantity K1 P0.
Observing that K̃ is small when compared with K1 and K2 it can be argued

that for practical purposes |α| ≈ |β| ≈ K2/2, ρ = P0 K̃1 K2

[

K̃ 2
1 − K2 K̃1

]−1 =
P0 K2/

(

K̃1 − K2

)

. Therefore Eq. (18) can be re-written as:

d Pv (t)

d ln t
tmax

≈ tmaxt
(

C2 (α − β) e(α−β)t − ρ K̃1e−K̃1t
)

= tmaxtρ K̃1

(

e−K2t − e−K̃1t
)

= P0tmaxt
K̃1 K2

K̃1 − K2

(

e−K2t − e−K̃1t
)

(19)

Having at disposal the quantity d Pv(t)
d ln t

tmax
in the Pv (t) − ln t

tmax
plane at t = t0 (first

straight line), it is possible to find reaction kinetic constant K̃1 graphically or by
means of the numerical evaluation of the root of a single variable non linear equation
as follows. Assuming that K2 � K̃1 (analogous considerations may be drawn in the
case K̃1 � K2 (19) may be further simplified as follows, being K̃1 − K2 ≈ K2 and
e−K2t0 ≈ 0:

d Pv (t)

d ln t
tmax

∣

∣

∣

∣

∣

t=t0

≈ −P0tmaxt0 K̃1e−K̃1t0 (20)

Equation (20) root may be graphically determined finding the point of intersection of
the following hyperbola y1 and exponential function y2:
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y1 =
d Pv(t)

d ln t
tmax

∣

∣

∣

∣

t=t0

P0tmaxt0 K̃1

y2 = e−K̃1t0 (21)

In the case K2 � K̃1 a similar relation is derived. If a Newton-Raphson routine is at
disposal, the graphical representation (21) can be avoided and the root can be found
directly from (20).

To find K2 we take again in consideration the Eq. (16). Assuming again |α| ≈
|β| ≈ K2/2 and ρ = P0 K2/

(

K̃1 − K2

)

Eq. (16) becomes:

Pv (t) = C1 − ρ
K̃1

K2
e−K2t + ρe−K̃1t = ρ

(

K̃1

2β
− 1

)

− ρ
K̃1

K2
e−K2t + ρe−K̃1t

= P0 K2
(

K̃1 − K2

)

(

K̃1

K2
− 1 + e−K̃1t − K̃1

K2
e−K2t

)

⇒ Pv (t) = P0

⎡

⎣1 + K2
(

K̃1 − K2

)e−K̃1t − K̃1
(

K̃1 − K2

)e−K2t

⎤

⎦ (22)

Once K̃1 is known, (22) allows estimating K2 by means of the procedure summarized
in Table 1.

The first step consists in evaluating Nexp trial values of constant K2, where Nexp is
the number of sampled points (either experimental or deriving from another numer-
ical model) where torque values are known. In the case K2 � K̃1 again e−K̃2t ≈ 0,

with the obvious implication that (22) reduces to Pv (t) = P0

(

1 + K2

K̃1−K2
e−K̃1t
)

.

Assuming that Pexp (ti ) is the experimental normalized torque at ti and assuming
Pv(ti ) = Pexp (ti ), the direct evaluation of a trial value for K2 at ti is very straightfor-
ward:

Table 1 Pseudo-code of the function utilized for the simplified evaluation of K2

Nexp experimental (or numerical) time values where torque is known

K̃1, Pexp (ti ) , ti : known

Evaluate K T rial
2 (ti ): trial value of K2 at ti

For i from 1 to Nexp

Evaluate the total relative error assuming K2 = K T rial
2 (ti ) as follows

eK2(ti ) =
Nexp
∑

i=1

∣

∣

∣

∣

∣

P0

[

1+ K T rial
2

(

K̃1−K T rial
2

) e−K̃1 ti − K̃1
(

K̃1−K T rial
2

) e−K T rial
2 ti

]

−Pexp(ti )

∣

∣

∣

∣

∣

Pexp(ti )

Endfor

Assume K2 equal to K T rial
2 (ti ) that minimizes the total relative error
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K2 (ti ) = Pexp(ti ) − P0

Pexp(ti ) + P0e−K̃1ti − P0
(23)

For each trial value of K2 (ti ), hereafter called K T rial
2 , the total cumulative percentage

error obtained with the model proposed is then estimated by means of (22) as follows:

eK2(ti ) =
Nexp
∑

i=1

∣

∣

∣

∣

∣

P0

[

1 + K T rial
2

(

K̃1−K T rial
2

)e−K̃1ti − K̃1
(

K̃1−K T rial
2

)e−K T rial
2 ti

]

− Pexp (ti )

∣

∣

∣

∣

∣

Pexp (ti )

(24)

where Nexp is the total number of sampled points.
The optimal K2 among K T rial

2 values is obviously selected as that minimizing
error (24).

With final values of K̃1 and K2 so obtained, K̃ is finally estimated assuming the
value of the tangent line known in the descending branch at t3 in the ln t

tmax
− Pv (t)

plane (Eq. 18). In particular, such value is again provided by the exponential
model as:

d Pv (t)

d ln t
tmax

∣

∣

∣

∣

∣

t=t3

= tmaxt3
(

C1 (α + β) e(α+β)t3 + C2 (α−β) e(α−β)t3 −ρ K̃1e−K̃1t
)

ρ = K1 K2 P2
0

[

(K1 P0)
2 − K2 (K1 P0) + K̃ 2

]−1
(25)

α = − K2

2

β =
√

(K2/2)2 − K̃ 2

A standard numerical routine to find zeros of a non linear function with one variable
(K̃ ) may be used to obtain an estimation of the constant.

3 Numerical applications

In order to assess the reliability of the simplified direct model proposed in reproducing
sulphur cured EPDM crosslinking degree, two experimental data sets available in the
literature [12] are here re-considered. Experimental data available rely into cure curves
performed at different temperature conditions. Typically, three different temperatures
are considered, in order to have an insight into the variability of kinetic constants with
respect to temperature.

To perform a numerical optimization of the kinetic model proposed, experimental
cure values are normalized dividing each point of the curve by the maximum torque
values, so that experimental data are always within the range 0–1.
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3.1 First data set

Experimental data used to perform the first set of numerical simulations are available
from [12] at three increasing temperatures, namely 160, 180 and 200 ◦C. Rheometer
charts were obtained by mean of a Monsanto Oscillating Disc Rheometer ODR with
an arc deflexion of 3◦. The compound exhibits a medium-high level of insaturation
and it is therefore quite indicated to check the predictivity of the model proposed in
presence of remarkable reversion. The composition of the EPDM hereafter considered
is schematically summarized in Table 2.

In Fig. 3, a comparison among cure curve provided by the present approach, alter-
native numerical models and experimental results is sketched for a temperature equal
to 160 ◦C.

Figure 3a is a classic rheometer chart, similar to Fig. 2, but with vertical axis values
normalized as (M − Mm)/(Mmax − Mm), with Mm and Mmax representing minimum
and maximum torque values respectively, whereas in the second sub-figure the quan-
tity log(t/tmax) is represented in the horizontal axis, i.e. the logarithm of the normalized
vulcanization time. This latter representation, whilst non-standard, is practically very
useful because it suggests to approximate both the experimental and numerical data
provided by Eq. (16) by means of three straight lines. The slope of the last line well
approximates reversion. Authors experienced that such a behavior is systematic, i.e.
it occurs at any temperature for any compound and helps for a very practical charac-
terization of reaction constants.

In Fig. 3a, squares represent the few points utilized to fit experimental data through
the second order differential equation model (16), sketched in the figure by means of
a dashed line.

The continuous thick blue curve is the full experimental curve obtained by ODR
tests, whereas the continuous line with diamond symbols is the representation, in the
normalized rheometer chart, of Eq. (22). As it is possible to notice, the agreement
among all models is almost perfect, within all the time range inspected. Even Eq. (22),
which is a theoretical model without reversion, fits very well experimental data. This
is not surprising, because very little or no reversion is expected at low curing temper-
atures.

Little discrepancy is found for the three-line model in a very strict time range near
a crosslinking equal to 0.9. Again this behavior was expected, because the so-called
three-line approximation is conceived exclusively to have an estimate of meaningful
first derivative values (in the modified rheometer chart) of the cure curve, to succes-
sively evaluate directly, by means of Eqs. (21, 24) and (25) K̃1, K2 and K̃ values,
without the utilization of a non-linear least square approach.

Once K̃1, K2 and K̃ are at disposal by means of the three-line approach, Eq. (16)
may be used directly to fit experimental data with the exponential model.

In Table 3, a comparison between kinetic constants provided by the exponential
model and the simplified direct method is summarized. The agreement is very sat-
isfactory, with percentage errors not exceeding 5 % in the most unfavourable case, a
result which seems very satisfactory having in mind the practical application of the
model proposed.
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Table 2 First and second data set rubber composition

Polymer type used DUTRAL 4334

% of Propylene content by wt 27

% ENB by wt. 4.7

% oil by wt. 30

ML(1 + 4)125 ◦C 28

First data set

Formulation for white items Description in phr

Polymer Dutral 4334 140

Zinc Oxide Activator 5

Stearic acid Co-agent 3

Clay Filler 400

Titanium Bioxide Co-agent whitener 15

Paraffinic oil wax additive 40

Sulphur vulcanization agent 2

TMTD Tetramethylthiuram disulfide Accelerator 2

MBT2 Mercaptobenzothiazole Acceleretor 2

Characteristics of the compound

ML(1 + 4)100 ◦C 67

ODR at 180 ◦C t2 1′06′′
t90 5′30′′

Characteristics of the vulcanized compound

Tensile strength Kg/cm2 80

Elongation at break % 600

Hardness Shore A 74

Second data set

Compound for black items Description in phr

Polymer Dutral 4334 140

Zinc Oxide Activator 5

Stearic acid Co-agent 1

HAFN 330 Carbon black–filler 140

Paraffinic oil (Cortis 100M) Wax additive 30

Sulphur Vulcanization agent 1.5

TMTD Tetramethylthiuram disulfide Accelerator 1.0

MBT2 Mercaptobenzothiazole Acceleretor 0.5

Characteristics of the compound

ML(1 + 4)100 ◦C 88

ODR 200 ◦C t2 55′′
t90 1′54′′

Characteristics of the vulcanized compound

Tensile strength Kg/cm2 165

Elongation at break % 310

Hardness shore A 73
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Fig. 3 First data set at 160 ◦C. a Traditional rheometer charts. b Rheometer charts in normalized logarith-
mic scale

Comparisons among all models for temperatures equal to 180 and 200 ◦C are rep-
licated in Figs. 4 and 5 respectively, again with a twofold graphical representation.
Also in these latter cases, the agreement with the experimental response seems quite
accurate. As can be noted, very few experimental points are needed to obtain a rather
satisfactory reproduction of the actual experimental curve.

As expected, reversion is rather marked at 200 ◦C, but has a perceivable effect also
for the curing curve at 180 ◦C. As expected, in both these latter cases, Eq. (22) model
progressively loses is accuracy, especially at increasing curing times, being reversion
completely disregarded in the model.
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Table 3 First data set

Kinetic constant
(1/sec)

Exponential model non
linear least squares

Present direct model Percentage error (%)

160 ◦C

K1 0.5671 0.5718 −0.83

K2 1.2567 1.2418 1.18

K̃ 0.0492 0.0477 3.05

180 ◦C

K1 0.8903 0.9101 −2.22

K2 2.5501 2.4374 4.42

K̃ 0.1610 0.1578 1.99

200 ◦C

K1 1.8106 1.7469 3.52

K2 7.5407 7.9126 −4.93

K̃ 0.5702 0.5839 −2.40

Comparison between kinetic constants evaluated by means of the exponential model and the simplified
direct model

For the sake of completeness in Fig. 6 hyperbolae y1 and exponential functions
y2 defined in Eq. (21) for the graphical determination of constant K̃1 (as intersection
point between y1 and y2), are represented for the three temperatures inspected. As it is
possible to notice, the graphical determination of constant K̃1 at different temperatures
is very straightforward and may be obtained without any effort.

Having at disposal, from the numerical model, all the three kinetic constants at
three different temperatures, it is possible to check if such kinetic constants follow
an Arrhenius law with respect to temperature. At this aim, numerical values are plot-
ted in the Arrhenius space (1/T–log(Ki) plane), to see if they lay on a straight line.
Figure 7 shows, for the three kinetic constants under consideration, the linear regres-
sion obtained in the Arrhenius space (squares, circles and triangles represent kinetic
constants found with the single differential equation model, fitting experimental data).
As it is possible to notice, all the three Ki seem to follow roughly an Arrhenius law
of the type Ki = Ki0e−Eai /RT , having defined with log Ki0 the y-value of the regres-
sion lines in the Arrhenius space for 1/T equal to zero (i.e. kinetic constant at infinite
temperature) and Eai the reaction activation energy, being R the gas constant.

With reference to Fig. 7, where a comparison between the three kinetic constants
provided by the model are reported, the following considerations may be deduced:

1. As expected, values found for K1 and K2 are higher than values for K̃ , which is the
combination of final vulcanization and devulcanization in all experimental range
and for EPDM with low and high insaturation. While reversion is present at high
temperatures for both compounds, obviously devulcanization is a phenomenon
that interests a relatively small amount of crosslinked polymer. Devulcanization
sensibly increases with temperature, as correctly predicted by the model (increase
of constant K̃ ). As expected, devulcanization is quite critical, the blend under
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Fig. 4 First data set at 180 ◦C. a Traditional rheometer charts. b Rheometer charts in normalized logarith-
mic scale

consideration exhibiting relatively big values of K̃ (comparable with K1 values)
at high vulcanization temperatures.

2. The observation that K1 values are, in any case, systematically higher than K̃
values and generally lower than K2, may be justified by the fact that the reaction
between the polymer and accelerator is very fast and sensible to temperature var-
iation. Therefore, it is crucial to homogenize the compounds, during the mixing
of polymers, filler, accelerators, sulfur and other additives and co-adjuvants.
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Fig. 5 First data set at 200 ◦C. a Traditional rheometer charts. b Rheometer charts in normalized logarith-
mic scale

3. K2 values are systematically higher than K1 and this justifies the strong math-
ematical hypothesis to assume K2 � K1. This means that the formation of the
initial cross-linking is not influenced by small and big amount of ENB.

4. K̃ values increase considerably at high temperatures. Ideally, a temperature where
the value of K̃ equates the value of K1 may be easily found intersecting corre-
sponding regression lines in the Arrhenius plane. In this case, the intersection point
corresponds roughly to a temperature equal to 240 ◦C. Such a value may be con-
sidered as the limit over vulcanization of any item constituted by the compound
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Fig. 6 First data set. Graphical
determination of constant K̃1
basing on Eq. (21). a 160 ◦C. b
180◦C. c 200 ◦C
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under consideration is theoretically impossible, being there the rate of vulcaniza-
tion equal to the rate of devulcanization. In practice, very inefficient curing occurs
even at lower temperatures, say 220−210 ◦C.
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Fig. 7 First data set. Linear regression interpolation of the kinetic constants provided by the single differ-
ential equation model in the Arrhenius space (1/T–log(Ki))

3.2 Second data set

The second set of experimental data available [12] refers to an EPDM compound with
little unsaturations, where reversion at high temperature is relatively small. Experimen-
tal cure curves available were collected at three increasing temperatures, namely 160,
180 and 200 ◦C. The exact composition of the blend analyzed is summarized in Table 2.

In Fig. 8, a comparison among rheometer curve obtained with the present model,
exponential model (16), experimental data and model without reversion (Eq. 22) is
depicted. Excellent agreement with all results is found. Reversion is in practice null, as
confirmed both by the small values of constant K̃ reported in Table 4 and by the three-
line approximation represented in Fig. 8b. As it is possible to notice, indeed, the third
approximating line is almost horizontal, meaning that its slope (directly connected
to K̃ value) is almost zero. The practical utility of the non-standard rheometer chart
represented in Fig. 8b is very straightforward in this case, suggesting a direct rough esti-
mation of the actual values of kinetic constants involved in the vulcanization process.

Comparisons among all models are replicated in Figs. 9 and 10 for vulcaniza-
tion temperatures equal to 180 and 200 ◦C respectively. Again, the agreement among
all different models is very satisfactory. Reversion is in this case very small, with a
slight increase for external vulcanization temperature equal to 200 ◦C. Being in this
case reversion less critical, the simplified model provided by Eq. (22) is capable of
providing relatively good results even at high temperatures.

Analogously to what done in the previous case, for the sake of completeness, in
Fig. 11 hyperbolae y1 and exponential functions y2 defined in Eq. (21) are represented
for the three temperatures inspected, in order to determine graphically constant K̃1 as
intersection point between y1 and y2.
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Fig. 8 Second data set at 160 ◦C. a Traditional rheometer charts. b Rheometer charts in normalized loga-
rithmic scale

In Table 4, a full comparison between kinetic constants provided by the exponen-
tial model and the simplified direct method here proposed for the second data set is
summarized. The agreement is almost perfect for all the temperatures inspected, with
a percentage error in practice negligible for practical purposes.

Again, having at disposal from the numerical model the three kinetic constants at
three different temperatures, it is possible to check if they follow an Arrhenius law,
simply plotting numerical results in the Arrhenius space (1/T–log(Ki) plane). Figure 12
shows that a linear regression for K1, K2 and K̃ seems quite adequate with small devi-
ation of the sampled values from the regression line. This result confirms again that
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Table 4 Second data set

Kinetic constant
(1/sec)

Exponential model
non linear least squares

Present direct model Percentage error (%)

160 ◦C

K1 0.3054 0.3000 1.77

K2 1.4612 1.5074 −3.16

K̃ 0.00791 0.00803 −1.52

180 ◦C

K1 0.5941 0.5950 −0.15

K2 2.5303 2.5226 0.30

K̃ 0.0201 0.0202 −0.49

200 ◦C

K1 1.7512 1.7679 −0.95

K2 5.4486 5.3588 1.65

K̃ 0.2247 0.2228 0.85

Comparison between kinetic constants evaluated by means of the exponential model and the simplified
direct model

partial kinetic constants seem to obey an Arrhenius law of the type Ki = Ki0e−Eai /RT ,
with meaning of the symbols already discussed for the previous example.

Having an insight into Fig. 12, it is possible to do the following considerations:

1. As expected, again values found for K1 and K2 are higher than values for K̃ , which
synthetically represents oxidation, desulphuration and devulcanization reactions.
This behavior is systematic and may be appreciated in all experimental range
inspected. While reversion is present at high temperatures also in this case, here
it is much less marked, thanks to the small amount of insaturations within the
blend. From a mathematical point of view, this issue may be immediately checked
comparing the slope of the regression line relevant for K̃ corresponding to the
two cases analyzed, see Figs. 7 and 12.

2. Devulcanization seems to have perceivable effects in the rheometer chart only
for temperatures exceeding 200 ◦C. This behavior is again correctly predicted by
the model (increase of constant K̃ at high temperatures in Fig. 12 and decrease
of the numerical rheometer curve at 200 ◦C in Fig. 10). However, values found
for K̃ remain relatively small even at high temperature and in any case sensibly
lower than values of constants K1 and K2 (respectively around 1/9 and 1/25).
This remark again confirms that, as correctly predicted by the model, devulcan-
ization is here less critical, with very small reversion (in practice negligible) for
temperatures lower than 180 ◦C.

3. K2 values are generally higher than K1. Differently to the previous case, the slope
of the regression lines for K1 and K2 is quite similar and an inversion of such a
behavior is not expected in the range of temperatures where curing is practically
possible. From a physical point of view, it can be stated that the formation of pen-
dent sulphur (reaction associated to K1) and crosslink (associated to K2) always
proceed with the same velocity rate.
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Fig. 9 Second data set at 180 ◦C. a Traditional rheometer charts. b Rheometer charts in normalized loga-
rithmic scale

4. Extrapolating regression lines data, it can be seen that line representing K̃ does
not cross either K1 or K2 regression lines, meaning that a blend with very small
amount of insaturations is very stable, even at very high temperatures. This implies
that, at least from a theoretical point of view, a good vulcanization level may be
achieved at very high temperatures and quite reduced curing times, with a clear
economical advantage for the producers.

123



J Math Chem (2012) 50:2577–2605 2601

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Time [min]

N
or

m
al

iz
ed

 to
rq

ue
 M

t/M
tm

ax

Data set 2 200°C

Numerical exponential law
Experimental data utilized to set numerical model
Three-line approximation
Simplified model without reversion
Full experimental data

-7 -6 -5 -4 -3 -2 -1 0
0

0.2

0.4

0.6

0.8

1

log(t/tmax)

N
or

m
al

iz
ed

 to
rq

ue
 M

t/M
tm

ax

Data set 2 200°C

Full experimental data curve
Numerical exponential law
Three-line approximation

a

b

Fig. 10 Second data set at 200 ◦C. a Traditional rheometer charts. b Rheometer charts in normalized
logarithmic scale

4 Conclusions

In the present paper, a direct method to determine reaction kinetic constants within an
existing mathematical procedure [32] interpreting EPDM accelerated sulphur curing
has been presented.
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Fig. 11 Second data set.
Graphical determination of
constant K̃1 basing on Eq. (21).
a 160 ◦C. b 180 ◦C. c 200 ◦C
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The model bases on a preliminary characterization of rubber through standard
rheometer tests and allows an accurate prediction of the crosslinking degree at both
successive curing times and different controlled temperatures.
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Fig. 12 Second data set. Linear regression interpolation of the kinetic constants provided by the single
differential equation model in the Arrhenius space (1/T–log(Ki))

While in [32] a calibration of three kinetic constants at fixed temperature by means of
non-linear least square fitting was required, here a simple model based on closed form
formulas, derived from meaningful simplifications of the original rigorous approach
has been utilized.

The applicability of the procedure is immediate and makes the model extremely
appealing when fast and reliable estimates of crosslinking density of cured EPDM are
required.

The evaluation of kinetic constants bases on the knowledge of rheometer charts,
for the blend considered, at three or more vulcanization temperatures. Hence, rheom-
eter test remains the key experimental device to study the kinetics of crosslinking for
accelerated sulphur vulcanization.

As a matter of fact, from the basic mechanisms of accelerated sulphur vulcaniza-
tion of EPDM and the experimental rheometer data, it is possible to directly determine
K1, K2 and K̃ kinetic constants represented in Figs. 7 and 12.

Such constants represent physically the rates of partial reactions schematically
shown in Fig. 1. Within the direct mathematical method proposed to solve the differ-
ential equation model (16), we can draw the following considerations:

1. All Ki partial kinetic constants seem to follow roughly an Arrhenius law. The
analytical knowledge of Ki dependence on the temperature is extremely useful
when it is necessary to evaluate the kinetic behavior of a blend for a temperature
not coinciding with those selected for rheometer tests.

2. The variation of the reaction constant in the Arrhenius space is systematically
big for K̃ and small for K1, meaning that reversion is strongly dependent on
vulcanization temperature.

3. From numerical simulations, it can be deduced that the utilization of EPDM with
considerable amount of ENB content, results in an increase of the crosslinking
precursor formation, a lower EPDM initial crosslinking, and a marked increase
of the velocities of the three multiple reactions that can be associated to reversion
and devulcanization.
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4. As a consequence of the above considerations, it is possible to deduce that, if
the vulcanization temperature increases, there is a decrease of the time neces-
sary to reticulation, but an increase of reversion and probably a decrease of the
mechanical properties of the items (in particular the stress-strain curve associated
to the final vulcanized item will exhibit a less stiff behavior). All these consider-
ations are quite important for manufactures interested in improving cured rubber
mechanical properties, in changing vulcanization temperature, time, recipes and
polymer types. Finally, the maximization of rubber performances at the same time
reducing production costs as a function of the vulcanization technology adopted,
is another issue that can be tackled with the approach prosed.
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